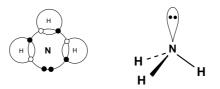
NITROGEN AND ITS COMPOUNDS

Nitrogen • occurs in Group V

- electronic configuration ... 1s² 2s² 2p²
- exists as a diatomic molecule N₂
- very unreactive triple bond between atoms has a high bond dissociation enthalpy
- makes up 79% of atmospheric gases

Oxidation states

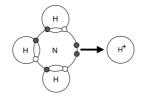

Exhibits the whole range of oxidation states

+5	HNO_3	NO_3^-	oxidising agent
+4	NO ₂		
+3	HNO ₂	NO_2^-	
+2	NO		
+1	N_2O		
0	N ₂		
-1	NH ₂ OH		
-2	N_2H_4		
-3	NH_3	NH_{4}^{+}	reducing agent

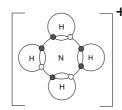
Ammonia

• **covalent** hydride of nitrogen

- higher than expected boiling point due to intermolecular hydrogen bonding
- pyramidal in shape due to repulsion between 3 bond pairs and 1 lone pair



- acts as a Lewis base due to lone pair on nitrogen
- acts as a Bronsted-Lowry base as it can pick up protons


 $NH_3 + H^+ - > NH_4^+$

Ammonium ion

• ammonia can use its lone pair to form a co-ordinate (dative covalent) bond to a proton

ammonia *pyramidal*

ammonium ion tetrahedral

1

2		Cam Nitrog	gen & Sulphur
• amn	ned when ammonia read nonia is displaced from ting them with a stronge	$2NH_3 + H_2SO_4 \longrightarrow (NH_4)_2SO_4$ $NH_3 + HNO_3 \longrightarrow NH_4NO_3$ its salts by	
Haber Process	Ammonia is prepared industrially by the Haber Process		
	N _{2(g)} + 3H _{2(g)}	\longrightarrow 2NH _{3(g)} : $\Delta H = -92 \text{ kJ mol}^{-1}$	
Typical conditions	Pressure Temperature Catalyst	20000 kPa (200 atmospheres) 380-450°C iron	
Equilibrium theory favours	low temperature high pressure	exothermic reaction - higher yield at lower tem decrease in number of gaseous molecules	perature
Kinetic theory favours	high temperature high pressure catalyst	greater average energy + more frequent collisions for gaseous molecules lower activation energy	
Compromise conditions	Which is better?	A low yield in a shorter time a high yield over a longer period.	or
	The conditions used a kept up, even at a low	are a compromise with the catalyst enabling the ver temperature.	rate to be
Other factors	the higher the pressure, the more expensive the plant will bethe higher the temperature the more fuel is needed		
Other points	Other points unreacted gases are recycled ammonia is removed as a liquid 		
Products	 ammonia can be converted to nitric acid nitric acid is used to make dyes and explosives nitric acid and ammonia produce ammonium nitrate - a fertilizer 		
Fertilizers	 nitrates encourage a 	leaf and grass growth become contaminated by fertilizers algae growth which leads to de-oxygenation of s dlife - eutrophication	treams

Nitrogen & Sulp	hur Cam 3
Nitrogen oxides NO _x	 nitrogen forms several oxides, including NO nitric oxide N₂O nitrous oxide - 'laughing gas' nitrogen dioxide
	 many are formed during the burning of fossil fuels high temperature processes allow nitrogen to combine with oxygen nitrogen oxides encourage photochemical smog and breathing problems major pollutants from car exhausts removed using catalytic converters
Catalytic converters	In the catalytic converter CO is converted to CO_2 NO _x are converted to N ₂ unburnt hydrocarbons to CO ₂ and H ₂ O
	e.g. $2NO + 2CO \longrightarrow N_2 + 2CO_2$
	• catalysts are made of finely divided rare metals such as palladium, rhodium, platinum
	 leaded petrol must not pass through the catalyst as the lead deposits on the catalyst's surface and "poisons" it, thus blocking sites for reactions to take place.

ACID RAIN

Origin Rain has always been acidic due to the presence of dissolved nitrogen oxides formed when oxygen and nitrogen combine during lightning storms.

FuelsThe burning of fossil fuels has made the problem of acid rain much worseFossil fuels contain sulphur and its compounds which burn to produce sulphur dioxide

 $S + O_2 \longrightarrow SO_2$

Reactions Sulphur dioxide dissolves in water to produce a weak acid (sulphurous acid)

 $SO_2 + H_2O \implies 2H^+ + SO_3^{2-}$

Nitrogen oxides catalyses the oxidation of sulphur dioxide to sulphur(VI) oxide

Sulphur(VI) oxide dissolves in water to produce a strong acid (sulphuric acid)

 $SO_3 + H_2O \longrightarrow 2H^+ + SO_4^{2-}$

Effects

- erosion of rocksdamage to stone buildings
 - increasing acidity in rivers and lakes
- de-forestation

overall

SULPHUR DIOXIDE

Cam

- *General* simple covalent molecule
 - angular in shape repulsion between 2 lone pairs and 2 double bond pairs
 - sulphur is in oxidation state +4
 - reducing agent
 - · dissolves in water to produce a weak acidic solution

Effects **Good** • food preservative - dried fruit includes sulphur dioxide in its packaging

- decontaminant 'disinfects' glass vessels in home brewing
- Bad pollutant
 - major source of acid rain
 - causes breathing disorders

SULPHURIC ACID

Contact Process	Sulphuric acid is prepared industrially by the Haber Process			
	2SO_{2(g)} + O_{2(g)} \implies 2SO_{3(g)} : $\Delta H = -197 \text{ kJ mol}^{-1}$			
Typical conditions	PressureJust over 100 kPa (1 atmosphere)Temperature 550° CCatalyst V_2O_5 vanadium(V) oxide			
	All the reasons for using the above are the same as in the Haber Process			
Compromise conditions	The conditions used are a compromise with the catalyst enabling the rate to be kept up, even at a lower temperature.			
	NB The pressure is not high as any increase in yield isn't justified by the expense of stronger reaction vessels and creating the high pressure. A large increase in pressure had little effect on the yield.			
Other points	• sulphur dioxide is produced by burning sulphur or sulphur compounds S + O_2 > SO ₂			
	 unreacted gases are recycled sulphur trioxide is absorbed by conc sulphuric acid then diluted 			
	$SO_3 + H_2SO_4 \longrightarrow H_2S_2O_7$ oleum			
	$H_2S_2O_7 + H_2O \longrightarrow 2H_2SO_4$			
Uses of H ₂ SO ₄	making fertilisers making detergents paper industry			
	electrolysis making paints			

4